Skip to main content

History of Lean (Six Sigma)

After World War II, Japanese manufacturers were faced with the dilemma of vast shortages of material, financial, and human resources. These conditions resulted in the birth of lean manufacturing concept. Toyota motor company, led by its president (Toyota), recognized that American automakers of the era were out-producing their Japanese counterparts; in the mid 1940’s American companies were outperforming their Japanese counterparts by a factor of ten. In order to make a move toward improvement early, Japanese leaders, such as, Shigeo Shingo and Taiichi Ohno, devised a new, disciplined, process-oriented system, which is known today as “Toyota Production System” or “Lean Manufacturing” (Abdullah, 2003).

Taiichi Ohno, who was given the task of developing a system that would enhance productivity at Toyota, is generally considered to be the primary force behind its system.

After some experimentation, the Toyota production system was developed and refined between 1945 and 1970, and is still growing today all over the world.(Liker, 2004). In 1980s, products were being brought to the market with higher quality and lower price. Consumers came to expect higher quality and lower prices as a requisite for purchase. Some manufacturers faded away while others began to look diligently for better ways to compete (Hobbs, 2004). In order to compete in today’s fiercely competitive market,

US manufacturers have come to realize that the traditional mass production concept has to be adapted to the new ideas of lean manufacturing because the Japanese companies developed, produced and distributed products with half or less human effort, capital investment, floor space, tools, materials, time, and overall expense (Khatri, et.al, 2011).

Comments

Popular posts from this blog

Waste of Transportation, 7 Wastes in Lean Manufacturing (SIX Sigma)

Transport is the movement of materials from one location to another, this is a waste as it adds zero value to the product. Why would your customer (or you for that matter) want to pay for an operation that adds no value? Transport adds no value to the product, you as a business are paying people to move material from one location to another, a process that only costs you money and makes nothing for you. The waste of Transport can be a very high cost to your business, you need people to operate it and equipment such as trucks or fork trucks to undertake this expensive movement of materials. Waste of transport is a consequence of excessively long, intersecting transport paths, temporary storage, load and unload, transport of pallets hither and thither. Waste of transport is also caused by too detailed process breakdown and exaggerated division of work, due to imprecisely defined intermediate warehouses and due to production in large series.  Waste of tra...

21st Century, Essay (IELTS)

The 21st century has begun. What changes do you think this new century will bring? Use examples and details in your answer. Man, through the ages, has undergone many changes from the time when he depicted a herd of mammoths on the walls of his cave to these days when he can create beautiful pictures and even make coffee by use of computer technologies without leaving his favorite chair. The 20th century made huge steps in developing computer technologies and reached many goals that made our life much easier. What should we expect in the 21st century? First of all, I think that the pace of our life will speed up: we will move faster from one place to another, from one continent to another using high speed jet airplanes. Second of all, I believe that we will be able to do many things that take much time now without leaving our house. Computers will be everywhere including out clothes. Many people will have chips and mini computers inserted in their heads to hold huge amount of ...

The Future of Mechanical Engineering (Emerging Technologies Trends)

  Mechanical Engineering, long centered on designing and producing mechanical systems, is undergoing a profound transformation driven by technological advancements and global challenges. Here are some of the most impactful trends and cutting-edge technologies shaping the future of the field: 1. Artificial Intelligence (AI) and Machine Learning Revolutionizing Processes : AI is transforming how mechanical systems are designed, tested, and maintained. Machine learning-powered predictive maintenance reduces downtime and extends the lifespan of machinery. Practical Example : AI-based simulations optimize product designs virtually, cutting down prototyping costs and accelerating the development process. 2. Additive Manufacturing (3D Printing) Transformative Impact : 3D printing enables the creation of complex designs that are unachievable with traditional methods, facilitating rapid prototyping and on-demand production. Future Prospects : Innovations in materials like metal alloys and c...